Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria.

نویسندگان

  • Yan Zhang
  • Elise R Lyver
  • Simon A B Knight
  • Debkumar Pain
  • Emmanuel Lesuisse
  • Andrew Dancis
چکیده

Yeast Mrs3p and Mrs4p are evolutionarily conserved mitochondrial carrier proteins that transport iron into mitochondria under some conditions. Yeast frataxin (Yfh1p), the homolog of the human protein implicated in Friedreich ataxia, is involved in iron homeostasis. However, its precise functions are controversial. Anaerobically grown triple mutant cells (Deltamrs3/4/Deltayfh1) displayed a severe growth defect corrected by in vivo iron supplementation. Because anaerobically grown cells do not synthesize heme, and they do not experience oxidative stress, this growth defect was most likely due to Fe-S cluster deficiency. Fe-S cluster formation was assessed in anaerobically grown cells shifted to air for a brief period. In isolated mitochondria, Fe-S clusters were detected on newly imported yeast ferredoxin precursor and on endogenous aconitase by means of [35S]cysteine labeling and native gel separation. New cluster formation was dependent on iron addition to mitochondria, and the iron concentration dependence was shifted dramatically upward in the Deltamrs3/4 mutant, indicating a role of Mrs3/4p in iron transport. The frataxin mutant strain lacked protein import capacity because of low mitochondrial membrane potential, although this was partially restored by growth in the presence of high iron. Under these conditions, a kinetic defect in new Fe-S cluster formation was still noted. Import of frataxin into frataxin-minus isolated mitochondria promptly corrected the Fe-S cluster assembly defect without further iron addition. These findings show that Mrs3/4p transports iron into mitochondria, whereas frataxin makes iron already within mitochondria available for Fe-S cluster synthesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frataxin and mitochondrial carrier proteins, Mrs3p and Mrs4p, cooperate in providing iron for heme synthesis.

Frataxin is a conserved mitochondrial protein implicated in cellular iron metabolism. Deletion of the yeast frataxin homolog (YFH1) was combined with deletions of MRS3 and MRS4, mitochondrial carrier proteins implicated in iron homeostasis. As previously reported, the Deltayfh1 mutant accumulated iron in mitochondria, whereas the triple mutant (DeltaDeltaDelta) did not. When wild-type, Deltamrs...

متن کامل

Mutation in the Fe-S scaffold protein Isu bypasses frataxin deletion.

Frataxin is a conserved mitochondrial protein deficient in patients with Friedreich's ataxia. Frataxin has been implicated in control of iron homoeostasis and Fe-S cluster assembly. In yeast or human mitochondria, frataxin interacts with components of the Fe-S cluster synthesis machinery, including the cysteine desulfurase Nfs1, accessory protein Isd11 and scaffold protein Isu. In the present p...

متن کامل

The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2.

Many metalloproteins have the capacity to bind diverse metals, but in living cells connect only with their cognate metal cofactor. In eukaryotes, this metal specificity can be achieved through metal-specific metallochaperone proteins. Herein, we describe a mechanism whereby Saccharomyces cerevisiae manganese superoxide dismutase (SOD2) preferentially binds manganese over iron based on the diffe...

متن کامل

Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain.

The mitochondrial solute carriers Mrs3p and Mrs4p were originally isolated as multicopy suppressors of intron splicing defects. We show here that MRS4 is co-regulated with the iron regulon genes, and up-regulated in a strain deficient for Yfh1p, the yeast homologue of human frataxin. Using in vivo 55Fe cell radiolabeling we show that in glucose-grown cells mitochondrial iron accumulation is 5-1...

متن کامل

A non-essential function for yeast frataxin in iron-sulfur cluster assembly.

Friedreich's ataxia is caused by a deficit in frataxin, a small mitochondrial protein of unknown function that has been conserved during evolution. Previous studies have pointed out a role for frataxin in mitochondrial iron-sulfur (Fe-S) metabolism. Here, we have analyzed the incorporation of Fe-S clusters into yeast ferredoxin imported into isolated energized mitochondria from cells grown in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 281 32  شماره 

صفحات  -

تاریخ انتشار 2006